*** Welcome to piglix ***

Abstract syntax tree


In computer science, an abstract syntax tree (AST), or just syntax tree, is a tree representation of the abstract syntactic structure of source code written in a programming language. Each node of the tree denotes a construct occurring in the source code. The syntax is "abstract" in not representing every detail appearing in the real syntax. For instance, grouping parentheses are implicit in the tree structure, and a syntactic construct like an if-condition-then expression may be denoted by means of a single node with three branches.

This distinguishes abstract syntax trees from concrete syntax trees, traditionally designated parse trees, which are often built by a parser during the source code translation and compiling process. Once built, additional information is added to the AST by means of subsequent processing, e.g., contextual analysis.

Abstract syntax trees are also used in program analysis and program transformation systems.

Abstract syntax trees are data structures widely used in compilers, due to their property of representing the structure of program code. An AST is usually the result of the syntax analysis phase of a compiler. It often serves as an intermediate representation of the program through several stages that the compiler requires, and has a strong impact on the final output of the compiler.

Being the product of the syntax analysis phase of a compiler, the AST has several properties that are invaluable to the further steps of the compilation process.

ASTs are needed because of the inherent nature of programming languages and their documentation. Languages are often ambiguous by nature. In order to avoid this ambiguity, programming languages are often specified as a context-free grammar (CFG). However, there are often aspects of programming languages that a CFG can't express, but are part of the language and are documented in its specification. These are details that require a context to determine their validity and behaviour. For example, if a language allows new types to be declared, a CFG cannot predict the names of such types nor the way in which they should be used. Even if a language has a predefined set of types, enforcing proper usage usually requires some context. Another example is duck typing, where the type of an element can change depending on context. Operator overloading is yet another case where correct usage and final function are determined based on the context. Java provides an excellent example, where the '+' operator is both numerical addition and concatenation of strings.


...
Wikipedia

...