The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.
The appearance of visual complaints such as halos, glare and monocular diplopia after corneal refractive surgery has long been correlated with the induction of optical aberrations. Several mechanisms may explain the increase in the amount of higher-order aberrations with conventional eximer laser refractive procedures: a change in corneal shape toward oblateness or prolateness (after myopic and hyperopic ablations respectively), insufficient optical zone size and imperfect centration. These adverse effects are particularly noticeable when the pupil is large.
A wavefront is a surface over which an optical disturbance has a constant phase. Rays and wavefronts are two mutually complementary approaches to light propagation. Wavefronts are always normal (perpendicular) to the rays.
For light to converge to a perfect point, the wavefront emerging from the optical system must be a perfect sphere centered on the image point. The distance in micrometers between the actual wavefront and the ideal wavefront is the wavefront aberration, which is the standard method of showing the aberrations of the eye. Therefore, aberrations of the eye are the difference between two surfaces: the ideal and the actual wavefront.
In normal population the dominant aberrations are the ordinary second-order spherocylindrical focus errors, which are called refractive errors. Higher order aberrations are a relatively small component, comprising about 10% of the eye’s total aberrations. High order aberrations increase with age and mirror symmetry exists between the right and the left eyes.
Several studies have reported a compensation of the aberration of the cornea by the aberration of the crystalline lens. The spherical aberration of the cornea is usually positive whereas the young crystalline lens exhibits a negative spherical aberration. Besides, there is strong evidence of compensation for aberrations between the cornea and intraocular optics in cases of astigmatism (horizontal/vertical) and horizontal coma. The balance of corneal and internal aberrations is a typical example of creating two coupling optical systems.