*** Welcome to piglix ***

AES-256

Advanced Encryption Standard
(Rijndael)
AES-SubBytes.svg
The SubBytes step, one of four stages in a round of AES
General
Designers Vincent Rijmen, Joan Daemen
First published 1998
Derived from Square
Successors Anubis, Grand Cru
Certification AES winner, CRYPTREC, NESSIE, NSA
Cipher detail
Key sizes 128, 192 or 256 bits
Block sizes 128 bits
Structure Substitution-permutation network
Rounds 10, 12 or 14 (depending on key size)
Best public cryptanalysis

Attacks have been published that are computationally faster than a full brute-force attack, though none as of 2013 are computationally feasible.

For AES-128, the key can be recovered with a computational complexity of 2126.1 using the biclique attack. For biclique attacks on AES-192 and AES-256, the computational complexities of 2189.7 and 2254.4 respectively apply. Related-key attacks can break AES-192 and AES-256 with complexities 2176 and 299.5, respectively.

Attacks have been published that are computationally faster than a full brute-force attack, though none as of 2013 are computationally feasible.

The Advanced Encryption Standard (AES), also known by its original name Rijndael (Dutch pronunciation: [ˈrɛindaːl]), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.

AES is a subset of the Rijndael cipher developed by two Belgian cryptographers, Vincent Rijmen and Joan Daemen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes.

For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits.

AES has been adopted by the U.S. government and is now used worldwide. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data.

In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on November 26, 2001. This announcement followed a five-year standardization process in which fifteen competing designs were presented and evaluated, before the Rijndael cipher was selected as the most suitable (see Advanced Encryption Standard process for more details).

AES became effective as a federal government standard on May 26, 2002, after approval by the Secretary of Commerce. AES is included in the ISO/IEC 18033-3 standard. AES is available in many different encryption packages, and is the first (and only) publicly accessible cipher approved by the National Security Agency (NSA) for top secret information when used in an NSA approved cryptographic module (see Security of AES, below).


...
Wikipedia

...