Advanced Format 512e logo
|
|
Generation-one standard | |
---|---|
4096 (4 KiB) bytes per sector | |
Generation-one categories | |
512 emulation (512e) | 4K physical sectors on the drive media with 512 byte logical configuration |
4K native (4Kn) | 4K physical sectors on the drive media and 4K configuration reported to the host |
4K-ready host | A host system which works equally well with legacy 512 as well as 512e hard disk drives |
Year standard completed | |
March 2010 | |
Created by | |
IDEMA Long Data Sector Committee, composed of Dell, Fujitsu (now Toshiba Storage Products Company), Hewlett-Packard, Hitachi Global Storage Technologies, IDEMA, LSI Corporation, Maxtor (now Seagate), Microsoft, Phoenix Technologies, Samsung, Seagate Technology, Western Digital |
Advanced Format is a generic term pertaining to any disk sector format used to store data on magnetic disks in hard disk drives (HDDs) that exceeds 512, 520, or 528 bytes per sector, such as the 4096, 4112, 4160, and 4224-byte (4 KiB) sectors of the Advanced Format hard disk drives. Larger sectors enable the integration of stronger error correction algorithms to maintain data integrity at higher storage densities.
Advanced Format is also considered a milestone technology in the history of HDD storage, where data has been generally processed in 512-byte segments since at least the introduction of consumer-grade HDDs in the early 1980s, and in similar or smaller chunks in the professional field since the HDD's invention in 1956.
The need for long data sectors was first identified in 1998 when a technical paper issued by the National Storage Industry Consortium (NSIC) called attention to the conflict between continuing increases in areal density and the traditional 512-byte-per-sector format used in hard disk drives. Without revolutionary breakthroughs in magnetic recording system technologies, areal densities, and with them the storage capacities, hard disk drives were projected to stagnate.
The storage industry trade organization, International Disk Drive Equipment and Materials Association (IDEMA), responded by organizing the IDEMA Long Data Sector Committee in 2000, where IDEMA and leading hardware and software suppliers collaborated on the definition and development of standards governing long data sectors, including methods by which compatibility with legacy computing components would be supported. In August 2005, Seagate shipped test drives with 1K physical sectors to industry partners for testing. In 2010, industry standards for the first official generation of long data sectors using a configuration of 4096 bytes per sector, or 4K, were completed. All hard drive manufacturers have committed to shipping new hard drive platforms for desktop and notebook products with the Advanced Format sector formatting by January 2011.
Advanced Format was coined to cover what was expected to become several generations of long-data-sector technologies, and its logo was created to distinguish long-data-sector–based hard disk drives from those using legacy 512-, 520- or 528-byte sectors.
Generation-one Advanced Format, 4K sector technology, uses the storage surface media more efficiently by combining data that would have been stored in eight 512-byte sectors into one single sector that is 4096 bytes (4 KiB) in length. Key design elements of the traditional 512-byte sector architecture are maintained, specifically, the identification and synchronization marks at the beginning and the error correction coding (ECC) area at the end of the sector. Between the sector header and ECC areas, eight 512-byte sectors are combined, eliminating the need for redundant header areas between each individual chunk of 512-byte data. The Long Data Sector Committee selected the 4K block length for the first generation AF standard for several reasons, including its correspondence to the paging size used by processors and some operating systems as well as its correlation to the size of standard transactions in relational database systems.