*** Welcome to piglix ***

3D display


A stereo display (also 3D display) is a display device capable of conveying depth perception to the viewer by means of stereopsis for binocular vision.

The basic technique of stereo displays is to present offset images that are displayed separately to the left and right eye. Both of these 2D offset images are then combined in the brain to give the perception of 3D depth. Although the term "3D" is ubiquitously used, it is important to note that the presentation of dual 2D images is distinctly different from displaying an image in three full dimensions. The most notable difference to real 3D displays is that the observer's head and eyes movements will not increase information about the 3-dimensional objects being displayed. For example, holographic displays do not have such limitations. Similar to how in sound reproduction it is not possible to recreate a full 3-dimensional sound field merely with two stereophonic speakers, it is likewise an overstatement of capability to refer to dual 2D images as being "3D". The accurate term "stereoscopic" is more cumbersome than the common misnomer "3D", which has been entrenched after many decades of unquestioned misuse. It is to note that although most stereoscopic displays do not qualify as real 3D display, all real 3D display are also stereoscopic displays because they meet the lower criteria as well.

Based on the principles of stereopsis, described by Sir Charles Wheatstone in the 1830s, stereoscopic technology provides a different image to the viewer's left and right eyes. The following are some of the technical details and methodologies employed in some of the more notable stereoscopic systems that have been developed.

Traditional stereoscopic photography consists of creating a 3D illusion starting from a pair of 2D images, a stereogram. The easiest way to enhance depth perception in the brain is to provide the eyes of the viewer with two different images, representing two perspectives of the same object, with a minor deviation exactly equal to the perspectives that both eyes naturally receive in binocular vision.


...
Wikipedia

...