In statistics, the 68–95–99.7 rule is a shorthand used to remember the percentage of values that lie within a band around the mean in a normal distribution with a width of two, four and six standard deviations, respectively; more accurately, 68.27%, 95.45% and 99.73% of the values lie within one, two and three standard deviations of the mean, respectively. In mathematical notation, these facts can be expressed as follows, where X is an observation from a normally distributed random variable, μ is the mean of the distribution, and σ is its standard deviation:
In the empirical sciences the so-called three-sigma rule of thumb expresses a conventional heuristic that "nearly all" values are taken to lie within three standard deviations of the mean, i.e. that it is empirically useful to treat 99.7% probability as "near certainty". The usefulness of this heuristic of course depends significantly on the question under consideration, and there are other conventions, e.g. in the social sciences a result may be considered "significant" if its confidence level is of the order of a two-sigma effect (95%), while in particle physics, there is a convention of a five-sigma effect (99.99994% confidence) being required to qualify as a "discovery".
The "three sigma rule of thumb" is related to a result also known as the three-sigma rule, which states that even for non-normally distributed variables, at least 88.8% of cases should fall within properly-calculated three-sigma intervals. It follows from Chebyshev's Inequality. For unimodal distributions the probability of being within the interval is at least 95%. There may be certain assumptions for a distribution that force this probability to be at least 98%
These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution.