The 3-center 4-electron (3c–4e–) bond is a model used to explain bonding in certain hypervalent molecules such as tetratomic and hexatomic interhalogen compounds, sulfur tetrafluoride, the xenon fluorides, and the bifluoride ion. It is also known as the Pimentel–Rundle three-center model after the work published by George C. Pimentel in 1951, which built on concepts developed earlier by Robert E. Rundle for electron-deficient bonding. An extended version of this model is used to describe the whole class of hypervalent molecules such as phosphorus pentafluoride and sulfur hexafluoride as well as multi-center π-bonding such as ozone and sulfur trioxide.
While the term "hypervalent" was not introduced in the chemical literature until 1969,Irving Langmuir and G. N. Lewis debated the nature of bonding in hypervalent molecules as early as 1921. While Lewis supported the viewpoint of expanded octet, invoking s-p-d hybridized orbitals and maintaining 2c–2e– bonds between neighboring atoms, Langmuir instead opted for maintaining the octet rule, invoking an ionic basis for bonding in hypervalent compounds (see Hypervalent molecule, valence bond theory diagrams for PF5 and SF6).
In a 1951 seminal paper, Pimentel rationalized the bonding in hypervalent trihalide ions (X3–, X = F, Br, Cl, I) via a molecular orbital (MO) description, building on the concept of the "half-bond" introduced by Rundle in 1947. In this model, two of the four electrons occupy an all in-phase bonding MO, while the other two occupy a non-bonding MO, leading to an overall bond order of 0.5 between adjacent atoms (see Molecular orbital description).