2D Topological Materials, sometimes referred to as single layer materials, are crystalline materials consisting of a single layer of atoms. Since the isolation of graphene, a single-layer of graphite, in 2004, a large amount of research has been directed at isolating other 2D materials due to their unusual characteristics and for use in applications such as photovoltaics, semiconductors, electrodes and water purification.
2D materials can generally be categorised as either 2D allotropes of various elements or compounds (usually consisting of two covalently bonding elements). The elemental 2D materials generally carry the -ene suffix in their names while the compounds have -ane or -ide suffixes. Layered combinations of different 2D materials are generally called van der Waals heterostructures. However, the efficient integration of 2D functional layers with three-dimensional (3D) systems remains a significant challenge, limiting device performance and circuit design.
While the first 2D material to be discovered was graphene, in 2004, some 500 2D materials may remain to be found. Research on these other materials has grown more rapidly than that on graphene since 2010.
The global market for 2D materials is expected to reach US$390 million within a decade, mostly for graphene in the semiconductor, electronics, battery energy and composites markets.
Graphene is a crystalline allotrope of carbon in the form of a nearly transparent (to visible light) one atom thick sheet. It is hundreds of times stronger than most steels by weight. It has the highest known thermal and electrical conductivity, displaying current densities 1,000,000 times that of copper. It was first produced in 2004.
Andre Geim and Konstantin Novoselov won the 2010 Nobel Prize in Physics "for groundbreaking experiments regarding the two-dimensional material graphene". They first produced it by lifting graphene flakes from bulk graphite with adhesive tape and then transferring them onto a silicon wafer.