*** Welcome to piglix ***

16-cell honeycomb


In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations (or honeycombs) in Euclidean 4-space. The other two are its dual the 24-cell honeycomb, and the tesseractic honeycomb. This honeycomb is constructed from 16-cell facets, three around every face. It has a 24-cell vertex figure.

This vertex arrangement or lattice is called the B4, D4, or F4 lattice.

As a regular honeycomb, {3,3,4,3}, it has a 2-dimensional analogue, {3,6}, and as an alternated form (the demitesseractic honeycomb, h{4,3,3,4}) it is related to the alternated cubic honeycomb.

Vertices can be placed at all integer coordinates (i,j,k,l), such that the sum of the coordinates is even.

The vertex arrangement of the 16-cell honeycomb is called the D4 lattice or F4 lattice. The vertices of this lattice are the centers of the 3-spheres in the densest known packing of equal spheres in 4-space; its kissing number is 24, which is also the same as the kissing number in R4, as proved by Oleg Musin in 2003.

The D+
4
lattice (also called D2
4
) can be constructed by the union of two D4 lattices, and is identical to the tesseractic honeycomb:


...
Wikipedia

...