*** Welcome to piglix ***

100% renewable energy

Wind power plants in Xinjiang, China.jpg
ThreeGorgesDam-China2009.jpg
Perovosolarstation.jpg

The incentive to use 100% renewable energy for electricity, heating and cooling and transport is motivated by global warming, pollution and other ecological as well as economic and energy security concerns. Shifting the total global primary energy supply to renewable sources requires a transition of the energy system. In 2013 the Intergovernmental Panel on Climate Change has said that there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. Renewable energy use has grown much faster than even advocates anticipated.

In 2014 renewables such as wind, geothermal, solar, biomass and burnt waste provided 19% of the total world final energy consumption, roughly half of it traditional use of biomass. The most important sector electricity with a renewable share of 22.8%, most of it coming from water power with a share of 16.6%, followed by wind with 3.1%. Several places run their grids almost exclusively on renewable energy. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Also, Professors S. Pacala and Robert H. Socolow have developed a series of “Climate stabilization wedges” that can allow us to maintain our quality of life while avoiding catastrophic climate change, and "renewable energy sources," in aggregate, constitute the largest number of their "wedges."

Mark Z. Jacobson, professor of civil and environmental engineering at Stanford University and director of its Atmosphere and Energy Program says producing all new energy with wind power, solar power, and hydropower by 2030 is feasible and that existing energy supply arrangements could be replaced by 2050. Barriers to implementing the renewable energy plan are seen to be "primarily social and political, not technological or economic". Jacobson says that energy costs today with a wind, solar, water system should be similar to today's energy costs from other optimally cost-effective strategies. The main obstacle against this scenario is the lack of political will.


...
Wikipedia

...