Main

  • Materials informatics

    Materials informatics


    • Materials informatics is a field of study that applies the principles of informatics to materials science and engineering to better understand the use, selection, development, and discovery of materials. This is an emerging field, with a goal to achieve high-speed and robust acquisition, management, analysis, and dissemination of diverse materials data with the goal of greatly reducing the time and risk required to develop, produce, and deploy a new materials, which generally takes longer than 20 years.

      This field of endeavor is not limited to some traditional understandings of the relationship between materials and information. Some more narrow interpretations include combinatorial chemistry, Process Modeling, materials property databases, materials data management and product life cycle management. Materials informatics is at the convergence of these concepts, but also transcends them and has the potential to achieve greater insights and deeper understanding by applying lessons learned from data gathered on one type of material to others. By gathering appropriate meta data, the value of each individual data point can be greatly expanded.

      The concept of materials informatics is addressed by the Materials Research Society. For example, materials informatics is the theme of the December 2006 issue of the MRS Bulletin. The issue was guest-edited by John Rodgers of Innovative Materials, Inc., and David Cebon of Cambridge University, who describe the "high payoff for developing methodologies that will accelerate the insertion of materials, thereby saving millions of investment dollars."

      The editors focus on a limited definition of materials informatics, "the application of computational methodologies to processing and interpreting scientific and engineering data concerning materials." They state that "specialized informatics tools for data capture, management, analysis, and dissemination" and "advances in computing power, coupled with computational modeling and simulation and materials properties databases" will enable such accelerated insertion of materials.



      • Chapter 5: The Importance of Data [1] in Going to Extremes: Meeting the Emerging Demand for Durable Polymer Matrix Composites [2]
      • MRS Bulletin: Materials Informatics, Volume 31, No. 12.[3]
    Wikipedia
  • What Else?

    • Materials informatics

Extras