*** Welcome to piglix ***

Cetrimonium bromide

Cetrimonium bromide
Cetyltrimethyl ammonium bromide.svg
(C16)(C1)3NBr.jpg
Names
IUPAC name
hexadecyl-trimethyl-ammonium bromide
Identifiers
  • R02AA17 ([https://www.whocc.no/atc_ddd_index/?code=R02AA17 WHO) 57-09-0 R02AA17 (WHO)] N
3D model (Jmol)
ChEBI
ChemSpider
ECHA InfoCard 100.000.283
KEGG
PubChem CID
UNII
Properties
C19H42BrN
Molar mass 364.45 g/mol
Appearance white powder
Melting point 237 to 243 °C (459 to 469 °F; 510 to 516 K) (decomposes)
Pharmacology
D08AJ02 (WHO)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N  (what is YesYN ?)
Infobox references

Cetrimonium bromide [(C16H33)N(CH3)3]Br; cetyltrimethylammonium bromide; hexadecyltrimethylammonium bromide; CTAB] is a quaternary ammonium surfactant.

It is one of the components of the topical antiseptic cetrimide. The cetrimonium (hexadecyltrimethylammonium) cation is an effective antiseptic agent against bacteria and fungi. It is also one of the main components of some buffers for the extraction of DNA. It has been widely used in synthesis of gold nanoparticles (e.g., spheres, rods, bipyramids), mesoporous silica nanoparticles (e.g., MCM-41), and hair conditioning products. The closely related compounds cetrimonium chloride and cetrimonium stearate are also used as topical antiseptics and may be found in many household products such as shampoos and cosmetics. CTAB, due to its relatively high cost, is typically only used in select cosmetics.

As with most surfactants, CTAB forms micelles in aqueous solutions. At 303 K (30 °C) it forms micelles with aggregation number 75-120 (depending on method of determination; average ~95) and degree of ionization, α = 0.2–0.1 (fractional charge; from low to high concentration). The binding constant (K°) of Br counterion to a CTA+ micelle at 303 K (30 °C) is ca. 400 M-1. This value is calculated from Br and CTA+ ion selective electrode measurements and conductometry data by using literature data for micelle size (r = ~3 nm), extrapolated to the critical micelle concentration of 1 mM. However, K° varies with total surfactant concentration so it is extrapolated to the point at which micelle concentration is zero.

Cell lysis is a convenient tool to isolate certain macromolecules that exist primarily inside of the cell. Cell membranes consist of hydrophilic and lipophilic endgroups. Therefore, detergents are often used to dissolve these membranes since they interact with both polar and nonpolar endgroups. CTAB has emerged as the preferred choice for biological use because it maintains the integrity of precipitated DNA during isolation. Cells typically have high concentrations of macromolecules, such as glycoproteins and polysaccharides, that co-precipitate with DNA during the extraction process, causing the extracted DNA to lose purity. The positive charge of the CTAB molecule allows it to denature these molecules that would interfere with this isolation.


...
Wikipedia

...