Don't miss the special BONUS offer during our Beta-test period. The next 100 new Registered Users (from a unique IP address), to post at least five (5) piglix, will receive 1,000 extra sign-up points (eventually exchangeable for crypto-currency)!

* * * * *    Free Launch Promotions    * * * * *

  • $2,000 in free prizes! is giving away ten (10) Meccano Erector sets, retail at $200 each, that build a motorized Ferris Wheel (or one of 22 other models) ... see details

  • Free Ads! if you are a business with annual revenues of less than $1M - will place your ads free of charge for up to one year! ... read more

Digital autopsy

A digital autopsy is a non-invasive autopsy in which digital imaging technology, such as with Computerized Tomography (CT) or Magnetic Resonance Imaging (MRI) scans, is used to develop three-dimensional images for a virtual exploration of a human body.

Digital autopsy, simply, means conducting autopsy in computerized environment by digital tools. The first step of digitizing starts with the medical imaging modalities that provide the raw data images from the deceased. The most common modalities are Computerized Tomography (CT scan) and Magnetic Resonance Imaging (MRI) scanner. Three dimensional medical visualization is the technical process that provide the digital environment for exploration of the 3D body and conducting the digital autopsy.

The term cannot be found before 1985 in the literature. However, there are many other similar terms like: Postmortem CT scanning for individual organs, volumetric radiologic scanning, Virtual Autopsy and Virtopsy.

One of the first documented Digital Autopsy studies was conducted at the department of Neuroradiology, University Hospital Mainz, Germany in the year 1980, where in 105 specimens of human stillborn and live-birth infants, ranging in age from gestational week 13 to postnatal month 18 were studied. Since then the arena of 2D CT scan images has gradually evolved to present day technologies of Multi-planar reconstructions (MPR) and real to life high definition 3D rendering. In the year 1998 various aspects of human and animal anatomy and pathology were successfully studied by Digital 3D examination on the ancient mummified specimens at the Academic Medical Centre, Amsterdam. Similar studies have also since then been done at the British Museum. The digital 3D analysis of data obtained from CT scanning the mummies has helped in visualization of the faces of some of the mummies, including that of chanters from the Temple of Karnak. This technology has also given vast information about the embalming and burial processes. In the year, 2009 CT scanning and digital analysis of DICOM data was successfully used by the VIFM, Australia during the phase 2 of the DVI process for the Victorian bushfires. All dead bodies and scattered remains were CT scanned in their body bags using specific protocols and analyzed. Digital examination helped not only in separating the presence of non-human remains, but also was useful at the time of autopsy to capture and analyze the identifying features in cases of severe disfiguration.

  • It is impossible to preserve the body after dissection and gather the findings with non-destructive and contamination-free procedures.
  • Data acquisition in some body regions are difficult to somehow impossible, particularly in cases of decomposition.
  • Observer-independent documentation of the evidence is not available
  • Data acquisition of the body with respect for the deceased, next of kin and religious obligations
  • Slow and incomplete data acquisition in disasters


Don't forget! that as one of our early users, you are eligible to receive the 1,000 point bonus as soon as you have created five (5) acceptable piglix.