Don't miss the piglix.com special BONUS offer during our Beta-test period. The next 100 new Registered Users (from a unique IP address), to post at least five (5) piglix, will receive 1,000 extra sign-up points (eventually exchangeable for crypto-currency)!

* * * * *    Free piglix.com Launch Promotions    * * * * *

  • $2,000 in free prizes! piglix.com is giving away ten (10) Meccano Erector sets, retail at $200 each, that build a motorized Ferris Wheel (or one of 22 other models) ... see details

  • Free Ads! if you are a business with annual revenues of less than $1M - piglix.com will place your ads free of charge for up to one year! ... read more

Design


Design is the creation of a plan or convention for the construction of an object, system or measurable human interaction (as in architectural blueprints, engineering drawings, business processes, circuit diagrams, and sewing patterns). Design has different connotations in different fields (see design disciplines below). In some cases, the direct construction of an object (as in pottery, engineering, management, coding, and graphic design) is also considered to be design.

Designing often necessitates considering the aesthetic, functional, economic, and sociopolitical dimensions of both the design object and design process. It may involve considerable research, thought, modeling, interactive adjustment, and re-design. Meanwhile, diverse kinds of objects may be designed, including clothing, graphical user interfaces, skyscrapers, corporate identities, business processes, and even methods of designing.

Thus "design" may be a substantive referring to a categorical abstraction of a created thing or things (the design of something), or a verb for the process of creation, as is made clear by grammatical context.

More formally design has been defined as follows.



(noun) a specification of an object, manifested by an agent, intended to accomplish goals, in a particular environment, using a set of primitive components, satisfying a set of requirements, subject to constraints;
(verb, transitive) to create a design, in an environment (where the designer operates)
  • Pre-production design
  • Design during production
    • Development – continuation and improvement of a designed solution
    • Testing – in situ testing a designed solution
  • Post-production design feedback for future designs
  • Redesign – any or all stages in the design process repeated (with corrections made) at any time before, during, or after production.
  • Development – continuation and improvement of a designed solution
  • Testing – in situ testing a designed solution
  • Sociotechnical system design, a philosophy and tools for participative designing of work arrangements and supporting processes - for organizational purpose, quality, safety, economics and customer requirements in core work processes, the quality of peoples experience at work and the needs of society
  • KISS principle, (Keep it Simple Stupid), which strives to eliminate unnecessary complications.
  • There is more than one way to do it (TIMTOWTDI), a philosophy to allow multiple methods of doing the same thing.
  • Use-centered design, which focuses on the goals and tasks associated with the use of the artifact, rather than focusing on the end user.
  • User-centered design, which focuses on the needs, wants, and limitations of the end user of the designed artifact.
  • Critical design uses designed artifacts as an embodied critique or commentary on existing values, morals, and practices in a culture.
  • Service design designing or organizing the experience around a product, the service associated with a product's use.
  • Transgenerational design, the practice of making products and environments compatible with those physical and sensory impairments associated with human aging and which limit major activities of daily living.
  • Speculative design, the speculative design process doesn’t necessarily define a specific problem to solve, but establishes a provocative starting point from which a design process emerges. The result is an evolution of fluctuating iteration and reflection using designed objects to provoke questions and stimulate discussion in academic and research settings.
  • Exploring possibilities and constraints by focusing critical thinking skills to research and define problem spaces for existing products or services—or the creation of new categories; (see also Brainstorming)
  • Redefining the specifications of design solutions which can lead to better guidelines for traditional design activities (graphic, industrial, architectural, etc.);
  • Managing the process of exploring, defining, creating artifacts continually over time
  • Prototyping possible scenarios, or solutions that incrementally or significantly improve the inherited situation
  • Trendspotting; understanding the trend process.
  • Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J., and Thomas, D. Manifesto for agile software development, 2001.
  • Bourque, P., and Dupuis, R. (eds.) Guide to the software engineering body of knowledge (SWEBOK). IEEE Computer Society Press, 2004 .
  • Brooks, F.P. The design of design: Essays from a computer scientist, Addison-Wesley Professional, 2010 .
  • Cross, N., Dorst, K., and Roozenburg, N. Research in design thinking, Delft University Press, Delft, 1992 .
  • Dorst, K.; Cross, N. (2001). "Creativity in the design process: Co-evolution of problem-solution". Design Studies. 22 (2): 425–437. doi:10.1016/0142-694X(94)00012-3. 
  • Dorst, K., and Dijkhuis, J. "Comparing paradigms for describing design activity," Design Studies (16:2) 1995, pp 261–274.
  • Faste, R. (2001). "The Human Challenge in Engineering Design" (PDF). International Journal of Engineering Education. 17 (4–5): 327–331. 
  • McCracken, D.D.; Jackson, M.A. (1982). "Life cycle concept considered harmful". SIGSOFT Software Engineering Notes. 7 (2): 29–32. doi:10.1145/1005937.1005943. 
  • Newell, A., and Simon, H. Human problem solving, Prentice-Hall, Inc., 1972.
  • Pahl, G., and Beitz, W. Engineering design: A systematic approach, Springer-Verlag, London, 1996 .
  • Pahl, G., Beitz, W., Feldhusen, J., and Grote, K.-H. Engineering design: A systematic approach, (3rd ed.), Springer-Verlag, 2007 .
  • Ralph, P. "Comparing two software design process theories," International Conference on Design Science Research in Information Systems and Technology (DESRIST 2010), Springer, St. Gallen, Switzerland, 2010, pp. 139–153.
  • Royce, W.W. "Managing the development of large software systems: Concepts and techniques," Proceedings of Wescon, 1970.
  • Schön, D.A. The reflective practitioner: How professionals think in action, Basic Books, USA, 1983.
  • Simon, H.A. The sciences of the artificial, MIT Press, Cambridge, MA, USA, 1996 .
  • Truex, D.; Baskerville, R.; and Travis, J. (2000). "Amethodical systems development: The deferred meaning of systems development methods". Accounting, Management and Information Technologies. 10 (1): 53–79. doi:10.1016/S0959-8022(99)00009-0. 
...
Wikipedia

1,000 EXTRA POINTS!

Don't forget! that as one of our early users, you are eligible to receive the 1,000 point bonus as soon as you have created five (5) acceptable piglix.

...