*** Welcome to piglix ***

Glutamate decarboxylase

glutamate decarboxylase
Identifiers
EC number 4.1.1.15
CAS number 9024-58-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Glutamic acid decarboxylase 1
PDB GAD67.jpg
GAD67 derived from PDB: 2okj
Identifiers
Symbol GAD1
Alt. symbols glutamate decarboxylase 1
(brain, 67kD); GAD67
Entrez 2571
HUGO 4092
OMIM 605363
RefSeq NM_000817
UniProt Q99259
Other data
EC number 4.1.1.15
Locus Chr. 2 q31
glutamic acid decarboxylase 2
Identifiers
Symbol GAD2
Alt. symbols GAD65
Entrez 2572
HUGO 11284
OMIM 4093
RefSeq NM_001047
UniProt Q05329
Other data
EC number 4.1.1.15
Locus Chr. 10 p11.23

Glutamate decarboxylase or glutamic acid decarboxylase (GAD) is an enzyme that catalyzes the decarboxylation of glutamate to GABA and CO2. GAD uses PLP as a cofactor. The reaction proceeds as follows:

In mammals, GAD exists in two isoforms encoded by two different genes - GAD1 and GAD2. These isoforms are GAD67 and GAD65 with molecular weights of 67 and 65 kDa, respectively. GAD1 and GAD2 are expressed in the brain where GABA is used as a neurotransmitter, GAD2 is also expressed in the pancreas.

At least two more forms, GAD25 and GAD44 (embryonic; EGAD) are described in the developing brain. They are coded by the alternative transcripts of GAD1, I-80 and I-86: GAD25 is coded by both, GAD44 - only by I-80.

GAD65 and GAD67 synthesize GABA at different locations in the cell, at different developmental times, and for functionally different purposes. GAD67 is spread evenly throughout the cell while GAD65 is localized to nerve terminals. This difference is thought to reflect a functional difference; GAD67 synthesizes GABA for neuron activity unrelated to neurotransmission, such as synaptogenesis and protection from neural injury. This function requires widespread, ubiquitous presence of GABA. GAD65, however, synthesizes GABA for neurotransmission, and therefore is only necessary at nerve terminals and synapses. In order to aid in neurotransmission, GAD65 forms a complex with Heat Shock Cognate 70 (HSC70), cysteine string protein (CSP) and Vesicular GABA transporter VGAT, which, as a complex, helps package GABA into vesicles for release during neurotransmission. GAD67 is transcribed during early development, while GAD65 is not transcribed until later in life. This developmental difference in GAD67 and GAD65 reflects the functional properties of each isoform; GAD67 is needed throughout development for normal cellular functioning, while GAD65 is not needed until slightly later in development when synaptic inhibition is more prevalent.


...
Wikipedia

...