*** Welcome to piglix ***

Geotechnical centrifuge modeling


Geotechnical centrifuge modeling is a technique for testing physical scale models of Geotechnical Engineering systems such as natural and man-made slopes and earth retaining structures and building or bridge foundations.

The scale model is typically constructed in the laboratory and then loaded onto the end of the centrifuge, which is typically between 0.2 and 10 metres (0.7 and 32.8 ft) in radius. The purpose of spinning the models on the centrifuge is to increase the g-forces on the model so that stresses in the model are equal to stresses in the prototype. For example, the stress beneath a 0.1-metre-deep (0.3 ft) layer of model soil spun at a centrifugal acceleration of 50 g produces stresses equivalent to those beneath a 5-metre-deep (16 ft) prototype layer of soil in earth's gravity.

The idea to use centrifugal acceleration to simulate increased gravitational acceleration was first proposed by Phillips (1869). Pokrovsky and Fedorov (1936) in the Soviet Union and Bucky (1931) in the United States were the first to implement the idea. Andrew N. Schofield (e.g. Schofield 1980) played a key role in modern development of centrifuge modeling.

A geotechnical centrifuge is used to test models of geotechnical problems such as the strength, stiffness and capacity of foundations for bridges and buildings, settlement of embankments, stability of slopes, earth retaining structures, tunnel stability and seawalls. Other applications include explosive cratering, contaminant migration in ground water, frost heave and sea ice. The centrifuge may be useful for scale modeling of any large-scale nonlinear problem for which gravity is a primary driving force.

Geotechnical materials such as soil and rock have non-linear mechanical properties that depend on the effective confining stress and stress history. The centrifuge applies an increased "gravitational" acceleration to physical models in order to produce identical self-weight stresses in the model and prototype. The one to one scaling of stress enhances the similarity of geotechnical models and makes it possible to obtain accurate data to help solve complex problems such as earthquake-induced liquefaction, soil-structure interaction and underground transport of pollutants such as dense non-aqueous phase liquids. Centrifuge model testing provides data to improve our understanding of basic mechanisms of deformation and failure and provides benchmarks useful for verification of numerical models.


...
Wikipedia

...