*** Welcome to piglix ***

Doctor in a cell


By combining computer science and molecular biology, researchers have been able to work on a programmable biological computer that in the future may navigate within the human body, diagnosing diseases and administering treatments. This is what Professor Ehud Shapiro from the Weizmann Institute termed a “Doctor in a cell”.

In 1998 Shapiro presented a conceptual design for an autonomous, programmable molecular Turing machine, realized at the time as a mechanical device, and a vision of how such machines can cause a revolution in medicine.

The vision, termed “Doctor in a Cell” suggested that smart drugs, made of autonomous molecular computing devices, programmed with medical knowledge, could supplant present day drugs by analyzing the molecular state of their environment (input) based on programmed medical knowledge (program), and if deemed necessary release a drug molecule in response (output).

To realize this vision, Shapiro set a wet lab at Weizmann. Within a few years the lab has made pioneering steps towards realizing this vision: (1) A molecular implementation of a programmable autonomous automaton in which the input was encoded as a DNA molecule, “software” (automaton transition rules) was encoded by short DNA molecules and the “hardware” was made of made DNA processing enzymes. (2) A simplified implementation of an automaton in which the DNA input molecule is used as fuel (3) A molecular automata in which transition probabilities can be programmed by varying the concentration of “software” molecules, specifically the relative concentrations of molecules encoding competing transition rules. And (4) Extending the stochastic automaton with input and output mechanisms, allowing it to interact with the environment in a pre-programmed way, and release a specific drug molecule for cancer upon detecting expression levels of mRNA characteristic of a specific cancer. These biomolecular computers were demonstrated in a test tube, wherein a number of cancer markers were pre-mixed to emulate different marker combinations. Biomolecular computers identified the presence of cancer markers (Simultaneously and independently identifying small-cell lung cancer markers and prostate cancer markers). The computer, equipped with medical knowledge, analysed the situation, diagnosed the type of cancer and then released the appropriate drug.


...
Wikipedia

...