*** Welcome to piglix ***

Dextroscope


The Dextroscope is a Virtual Reality (VR) environment designed to provide medical professionals with deeper understanding of a patient's complex 3D anatomical relationships and pathology. Although its main intended purpose is to enable surgeons to plan a surgical procedure (in particular, neurosurgery), it has also proven useful in research in cardiology , radiology and medical education.

The Dextroscope allows its user to interact intuitively with a Virtual Patient. The Virtual Patient is composed of computer-generated 3D multi-modal images obtained from any DICOM tomographic data including CT, MRI, MRA, MRV, functional MRI and CTA, PET, SPECT and DTI. It can work with any multi-modality combination, supporting polygonal meshes as well.

The user sits at the Dextroscope 3D interaction console and manipulates the Virtual Patient using both hands in a similar manner to how one would manipulate a real object. Using stereoscopic visualisations displayed via a mirror, the Dextroscope user sees the Virtual Patient floating behind the mirror but within easy reach of the hands and uses flexible 3D hand movements to rotate and manipulate the object of interest. The Dextroscope allows virtual segmentation of organs and structures, making accurate 3D measurements, etc.

In one hand the user holds an ergonomically shaped handle with a switch that, when pressed, allows the 3D image to be moved freely as if it were an object held in real space. The other hand holds a pencil shaped stylus that is used to select tools from a virtual control panel and perform detailed manipulations and operations on the 3D image. The user does not see the stylus, handle or his/her hands directly, as they are hidden behind the surface of the mirror. Instead he/she sees a virtual handle and stylus calibrated to appear in exactly the same position as the real handle and stylus. The business end of the virtual handle can be selected to be anything that the software can create - drill tool, measurement tool, cutter, etc. Experience has shown that it is unnecessary to model the user's hands, provided that he/she can see and feel the real tools and that these perceptions match the virtual scene. This is highly advantageous since the hands would otherwise clutter the workspace and obscure the view of the object of interest.


...
Wikipedia

...