*** Welcome to piglix ***

Chemical computer


A chemical computer, also called reaction-diffusion computer, BZ computer (stands for Belousov–Zhabotinsky computer) or gooware computer is an unconventional computer based on a semi-solid chemical "soup" where data are represented by varying concentrations of chemicals. The computations are performed by naturally occurring chemical reactions.

Originally chemical reactions were seen as a simple move towards a stable equilibrium which was not very promising for computation. This was changed by a discovery made by Boris Belousov, a Soviet scientist, in the 1950s. He created a chemical reaction between different salts and acids that swing back and forth between being yellow and clear because the concentration of the different components changes up and down in a cyclic way. At the time this was considered impossible because it seemed to go against the second law of thermodynamics, which says that in a closed system the entropy will only increase over time, causing the components in the mixture to distribute themselves till equilibrium is gained and making any changes in the concentration impossible. But modern theoretical analyses shows sufficiently complicated reactions can indeed comprise wave phenomena without breaking the laws of nature. (A convincing directly visible demonstration was achieved by Anatol Zhabotinsky with the Belousov-Zhabotinsky reaction showing spiraling colored waves.)

The wave properties of the BZ reaction means it can move information in the same way as all other waves. This still leaves the need for computation, performed by conventional microchips using the binary code transmitting and changing ones and zeros through a complicated system of logic gates. To perform any conceivable computation it is sufficient to have NAND gates. (A NAND gate has two bits input. Its output is 0 if both bits are 1, otherwise it's 1). In the chemical computer version logic gates are implemented by concentration waves blocking or amplifying each other in different ways.


...
Wikipedia

...