*** Welcome to piglix ***

Thermoelectric effect


The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side.

This effect can be used to generate electricity, measure temperature or change the temperature of objects. Because the direction of heating and cooling is determined by the polarity of the applied voltage, thermoelectric devices can be used as temperature controllers.

The term "thermoelectric effect" encompasses three separately identified effects: the Seebeck effect, Peltier effect, and Thomson effect. The Seebeck and Peltier effects are different manifestations of the same physical process; textbooks may refer to this process as the Peltier–Seebeck effect (the separation derives from the independent discoveries of French physicist Jean Charles Athanase Peltier and Baltic German physicist Thomas Johann Seebeck). The Thomson effect is an extension of the Peltier–Seebeck model and is credited to Lord Kelvin.

Joule heating, the heat that is generated whenever a current is passed through a resistive material, is related, though it is not generally termed as thermoelectric effect. The Peltier–Seebeck and Thomson effects are thermodynamically reversible, whereas Joule heating is not.

The Seebeck effect is the conversion of heat directly into electricity at the junction of different types of wire. It is named after the Baltic German physicist Thomas Johann Seebeck, who in 1821 discovered that a compass needle would be deflected by a closed loop formed by two different metals joined in two places, with a temperature difference between the joints. This was because the electron energy levels in each metal shifted differently and a voltage difference between the junctions created an electrical current and therefore a magnetic field around the wires. Seebeck did not recognize there was an electric current involved, so he called the phenomenon "thermomagnetic effect." Danish physicist Hans Christian Ørsted rectified the oversight and coined the term "thermoelectricity".


...
Wikipedia

...