*** Welcome to piglix ***

Sustainable engineering


Sustainable engineering is the process of designing or operating systems such that they use energy and resources sustainably, in other words, at a rate that does not compromise the natural environment, or the ability of future generations to meet their own needs.

Every engineering discipline is engaged in sustainable design, employing numerous initiatives, especially life cycle analysis (LCA), pollution prevention, design for the environment (DfE), design for disassembly (DfD), and design for recycling (DfR). These are replacing or at least changing pollution control paradigms. For example, concept of a "cap and trade" has been tested and works well for some pollutants. This is a system where companies are allowed to place a "bubble" over a whole manufacturing complex or trade pollution credits with other companies in their industry instead of a "stack-by-stack" and "pipe-by-pipe" approach, i.e. the so-called "command and control" approach. Such policy and regulatory innovations call for some improved technology based approaches as well as better quality-based approaches, such as leveling out the pollutant loadings and using less expensive technologies to remove the first large bulk of pollutants, followed by higher operation and maintenance (O&M) technologies for the more difficult to treat stacks and pipes. But, the net effect can be a greater reduction of pollutant emissions and effluents than treating each stack or pipe as an independent entity. This is a foundation for most sustainable design approaches, i.e. conducting a life-cycle analysis, prioritizing the most important problems, and matching the technologies and operations to address them. The problems will vary by size (e.g. pollutant loading), difficulty in treating, and feasibility. The most intractable problems are often those that are small but very expensive and difficult to treat, i.e. less feasible. Of course, as with all paradigm shifts, expectations must be managed from both a technical and an operational perspective. Historically, sustainability considerations have been approached by engineers as constraints on their designs. For example, hazardous substances generated by a manufacturing process were dealt with as a waste stream that must be contained and treated. The hazardous waste production had to be constrained by selecting certain manufacturing types, increasing waste handling facilities, and if these did not entirely do the job, limiting rates of production. Green engineering recognizes that these processes are often inefficient economically and environmentally, calling for a comprehensive, systematic life cycle approach. Green engineering attempts to achieve four goals:


...
Wikipedia

...