*** Welcome to piglix ***

Superlens


A practical superlens, or super lens, is a lens which uses metamaterials to go beyond the diffraction limit. The diffraction limit is a feature of conventional lenses and microscopes that limits the fineness of their resolution. Many lens designs have been proposed that go beyond the diffraction limit in some way, but there are constraints and obstacles involved in realizing each of them.

As Ernst Abbe reported in 1873, the lens of a camera or microscope is incapable of capturing some very fine details of any given image. The super lens, on the other hand, is intended to capture these fine details. Consequently, conventional lens limitation has inhibited progress in certain areas of the biological sciences. This is because a virus or DNA molecule is out of visual range with the highest powered microscopes. Also, this limitation inhibits seeing the minute processes of cellular proteins moving alongside microtubules of a living cell in their natural environments. Additionally, computer chips and the interrelated microelectronics are manufactured to smaller and smaller scales. This requires specialized optical equipment, which is also limited because these use the conventional lens. Hence, the principles governing a super lens show that it has potential for imaging a DNA molecule and cellular protein processes, or aiding in the manufacture of even smaller computer chips and microelectronics.

Furthermore, conventional lenses capture only the propagating light waves. These are waves that travel from a light source or an object to a lens, or the human eye. This can alternatively be studied as the far field. In contrast, a superlens captures propagating light waves and waves that stay on top of the surface of an object, which, alternatively, can be studied as both the far field and the near field.


...
Wikipedia

...