*** Welcome to piglix ***

Pulse transformer


A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

This is the most common type of transformer, widely used in electric power transmission and appliances to convert mains voltage to low voltage to power electronic devices. They are available in power ratings ranging from mW to MW. The insulated laminations minimizes eddy current losses in the iron core.

Small appliance and electronic transformers may use a split bobbin, giving a high level of insulation between the windings. The rectangular cores are made up of stampings, often in E-I shape pairs, but other shapes are sometimes used. Shields between primary and secondary may be fitted to reduce EMI (electromagnetic interference), or a screen winding is occasionally used.

Small appliance and electronics transformers may have a thermal cut-out built into the winding, to shut-off power at high temperatures to prevent further overheating.

Doughnut shaped toroidal transformers save space compared to E-I cores, and sometimes to reduce external magnetic field. These use a ring shaped core, copper windings wrapped round this ring (and thus threaded through the ring during winding), and tape for insulation.

Toroidal transformers have a lower external magnetic field compared to rectangular transformers, and can be smaller for a given power rating. However, they cost more to make, as winding requires more complex and slower equipment.

They can be mounted by a bolt through the center, using washers and rubber pads or by potting in resin.

An autotransformer has one winding that is tapped at some point along the winding. Voltage is applied across a portion of the winding, and a higher (or lower) voltage is produced across another portion of the same winding. The equivalent power rating of the autotransfomer is lower than the actual load power rating. It is calculated by: load VA × (|Vin – Vout|)/Vin. For example, an auto transformer that adapts a 1000 VA load rated at 120 Volts to a 240 Volt supply has an equivalent rating of at least: 1,000VA × (240V – 120V) / 240V = 500VA. However, the actual rating (shown on the tally plate) must be at least 1000 VA.

For voltage ratios that don't exceed about 3:1, an autotransformer is cheaper, lighter, smaller, and more efficient than an isolating (two-winding) transformer of the same rating. Large three-phase autotransformers are used in electric power distribution systems, for example, to interconnect 33 kV and 66 kV sub-transmission networks.


...
Wikipedia

...