*** Welcome to piglix ***

Proximity effect (electromagnetism)


In a conductor carrying alternating current, if currents are flowing through one or more other nearby conductors, such as within a closely wound coil of wire, the distribution of current within the first conductor will be constrained to smaller regions. The resulting current crowding is termed the proximity effect. This crowding gives an increase in the effective resistance of the circuit, which increases with frequency.

A changing magnetic field will influence the distribution of an electric current flowing within an electrical conductor, by electromagnetic induction. When an alternating current (AC) flows through a conductor, it creates an associated alternating magnetic field around it. The alternating magnetic field induces eddy currents in adjacent conductors, altering the overall distribution of current flowing through them. The result is that the current is concentrated in the areas of the conductor furthest away from nearby conductors carrying current in the same direction.

The proximity effect can significantly increase the AC resistance of adjacent conductors when compared to its resistance to a DC current. The effect increases with frequency. At higher frequencies, the AC resistance of a conductor can easily exceed ten times its DC resistance.

For example, if two wires carrying the same alternating current lie parallel to one another, as would be found in a coil used in an inductor or transformer, the magnetic field of one wire will induce longitudinal eddy currents in the adjacent wire, that flow in long loops along the wire, in the same direction as the main current on the side of the wire facing away from the other wire, and back in the opposite direction on the side of the wire facing the other wire. Thus the eddy current will reinforce the main current on the side facing away from the first wire, and oppose the main current on the side facing the first wire. The net effect is to redistribute the current in the cross section of the wire into a thin strip on the side facing away from the other wire. Since the current is concentrated into a smaller area of the wire, the resistance is increased.


...
Wikipedia

...