*** Welcome to piglix ***

Power-system protection


Power-system protection is a branch of electrical power engineering that deals with the protection of electrical power systems from faults through the isolation of faulted parts from the rest of the electrical network. The objective of a protection scheme is to keep the power system stable by isolating only the components that are under fault, whilst leaving as much of the network as possible still in operation. Thus, protection schemes must apply with very and pessimistic approach to clearing system faults. The devices that are used to protect the power systems from faults are called protection devices.

Protection systems usually comprise five components:

For parts of a distribution system, fuses are capable of both sensing and disconnecting faults.

Failures may occur in each part, such as insulation failure, fallen or broken transmission lines, incorrect operation of circuit breakers, short circuits and open circuits. Protection devices are installed with the aims of protection of assets, and ensure continued supply of energy.

Switchgear is a combination of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switches are safe to open under normal load current, while protective devices are safe to open under fault current.

While the operating quality of these devices, and especially of protective relays, is always critical, different strategies are considered for protecting the different parts of the system. Very important equipment may have completely redundant and independent protective systems, while a minor branch distribution line may have very simple low-cost protection.

There are three parts of protective devices:

Advantages of protected devices with these three basic components include safety, economy, and accuracy.

Protection on the transmission and distribution serves two functions: Protection of plant and protection of the public (including employees). At a basic level, protection looks to disconnect equipment which experience an overload or a short to earth. Some items in substations such as transformers might require additional protection based on temperature or gas pressure, among others.

In a power plant, the protective relays are intended to prevent damage to alternators or to the transformers in case of abnormal conditions of operation, due to internal failures, as well as insulating failures or regulation malfunctions. Such failures are unusual, so the protective relays have to operate very rarely. If a protective relay fails to detect a fault, the resulting damage to the alternator or to the transformer might require costly equipment repairs or replacement, as well as income loss from the inability to produce and sell energy.


...
Wikipedia

...