*** Welcome to piglix ***

Postprandial somnolence


Postprandial somnolence (colloquially known as the itis, food coma, after dinner dip, or postprandial sleep) is a normal state of drowsiness or lassitude following a meal. Postprandial somnolence has two components: a general state of low energy related to activation of the parasympathetic nervous system in response to mass in the gastrointestinal tract, and a specific state of sleepiness. While there are numerous theories surrounding this behavior, such as decreased blood flow to the brain, neurohormonal modulation of sleep through digestive coupled signaling, or vagal stimulation, none have been explicitly tested. To date human studies have loosely examined the behavioral characteristics of postprandial sleep, demonstrating potential shifts in EEG spectra and self-reported sleepiness. To date, the only clear animal model for examining the genetic and neuronal basis for this behavior is the fruit fly.

In response to the arrival of food in the stomach and small intestine, the activity of the parasympathetic nervous system increases and the activity of the sympathetic nervous system decreases. This shift in the balance of autonomic tone towards the parasympathetic system results in a subjective state of low energy and a desire to be at rest, the opposite of the fight-or-flight state induced by high sympathetic tone. The larger the meal, the greater the shift in autonomic tone towards the parasympathetic system, regardless of the composition of the meal.

When foods with a high glycemic index are consumed, the carbohydrates in the food are more easily digested than low glycemic index foods. Hence, more glucose is available for absorption. It should not be misunderstood that glucose is absorbed more rapidly because, once formed, glucose is absorbed at the same rate. It is only available in higher amounts due to the ease of digestion of high glycemic index foods. In individuals with normal carbohydrate metabolism, insulin levels rise concordantly to drive glucose into the body's tissues and maintain blood glucose levels in the normal range. Insulin stimulates the uptake of valine, leucine, and isoleucine into skeletal muscle, but not uptake of tryptophan. This lowers the ratio of these branched-chain amino acids in the bloodstream relative to tryptophan (an aromatic amino acid), making tryptophan preferentially available to the large neutral amino acid transporter at the blood–brain barrier. Uptake of tryptophan by the brain thus increases. In the brain, tryptophan is converted to serotonin, which is then converted to melatonin. Increased brain serotonin and melatonin levels result in sleepiness.


...
Wikipedia

...