*** Welcome to piglix ***

Pilot plant


A pilot plant is a pre-commercial production system that employs new production technology and/or produces small volumes of new technology-based products, mainly for the purpose of learning about the new technology. The knowledge obtained is then used for design of full-scale production systems and commercial products, as well as for identification of further research objectives and support of investment decisions. Other (non-technical) purposes include gaining public support for new technologies and questioning government regulations. Pilot plant is a relative term in the sense that pilot plants are typically smaller than full-scale production plants, but are built in a range of sizes. Also, as pilot plants are intended for learning, they typically are more flexible, possibly at the expense of economy. Some pilot plants are built in laboratories using stock lab equipment, while others require substantial engineering efforts, cost millions of dollars, and are custom-assembled and fabricated from process equipment, instrumentation and piping. They can also be used to train personnel for a full-scale plant. Pilot plants tend to be smaller compared to demonstration plants.

A word similar to pilot plant is pilot line. Essentially, pilot plants and pilot lines perform the same functions, but 'pilot plant' is used in the context of (bio)chemical and advanced materials production systems, whereas 'pilot line' is used for new technology in general.

Pilot plants are used to reduce the risk associated with construction of large process plants. They do so in several ways:

If a system is well defined and the engineering parameters are known, pilot plants are not used. For instance, a business that wants to expand production capacity by building a new plant that does the same thing as an existing plant may choose to not use a pilot plant.

Additionally, advances in process simulation on computers have increased the confidence of process designers and reduced the need for pilot plants. However, they are still used as even state-of-the-art simulation cannot accurately predict the behavior of complex systems.

As a system increases in size, system properties that depend on quantity of matter (with extensive properties) may change. The surface area to liquid ratio in a chemical plant is a good example of such a property. On a small chemical scale, in a flask, say, there is a relatively large surface area to liquid ratio. However, if the reaction in question is scaled up to fit in a 500-gallon tank, the surface area to liquid ratio becomes much smaller. As a result of this difference in surface area to liquid ratio, the exact nature of the thermodynamics and the reaction kinetics of the process change in a non-linear fashion. This is why a reaction in a beaker can behave vastly differently from the same reaction in a large-scale production process.


...
Wikipedia

...