*** Welcome to piglix ***

Oversampling


In signal processing, oversampling is the process of sampling a signal with a sampling frequency significantly higher than the Nyquist rate. Theoretically, a bandwidth-limited signal can be perfectly reconstructed if sampled above the Nyquist rate, which is twice the highest frequency in the signal. Oversampling improves resolution, reduces noise and helps avoid aliasing and phase distortion by relaxing anti-aliasing filter performance requirements.

A signal is said to be oversampled by a factor of N if it is sampled at N times the Nyquist rate.

There are three main reasons for performing oversampling:

Oversampling can make it easier to realize analog anti-aliasing filters. Without oversampling, it is very difficult to implement filters with the sharp cutoff necessary to maximize use of the available bandwidth without exceeding the Nyquist limit. By increasing the bandwidth of the sampled signal, design constraints for the anti-aliasing filter may be relaxed. Once sampled, the signal can be digitally filtered and downsampled to the desired sampling frequency. In modern integrated circuit technology, digital filters are easier to implement than comparable analog filters.

In practice, oversampling is implemented in order to achieve cheaper higher-resolution A/D and D/A conversion. For instance, to implement a 24-bit converter, it is sufficient to use a 20-bit converter that can run at 256 times the target sampling rate. Combining 256 consecutive 20-bit samples can increase the signal-to-noise ratio at the voltage level by a factor of 16 (the square root of the number of samples averaged), effectively adding 4 bits to the resolution and producing a single sample with 24-bit resolution.


...
Wikipedia

...