*** Welcome to piglix ***

Numerical cognition


Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics is primarily concerned with empirical questions.

Topics included in the domain of numerical cognition include:

A variety of research has demonstrated that non-human animals, including rats, lions and various species of primates have an approximate sense of number (referred to as "numerosity") (for a review, see Dehaene 1997). For example, when a rat is trained to press a bar 8 or 16 times to receive a food reward, the number of bar presses will approximate a Gaussian or Normal distribution with peak around 8 or 16 bar presses. When rats are more hungry, their bar pressing behavior is more rapid, so by showing that the peak number of bar presses is the same for either well-fed or hungry rats, it is possible to disentangle time and number of bar presses. In addition, in a few species the parallel individuation system has been shown, for example in the case of guppies which successfully discriminated between 1 and 4 other individuals.

Similarly, researchers have set up hidden speakers in the African savannah to test natural (untrained) behavior in lions (McComb, Packer & Pusey 1994). These speakers can play a number of lion calls, from 1 to 5. If a single lioness hears, for example, three calls from unknown lions, she will leave, while if she is with four of her sisters, they will go and explore. This suggests that not only can lions tell when they are "outnumbered" but that they can do this on the basis of signals from different sensory modalities, suggesting that numerosity is a multisensory concept.


...
Wikipedia

...