*** Welcome to piglix ***

Neurophilosophy


Empirical (not transcendental) neurophilosophy or philosophy of neuroscience is the interdisciplinary study of neuroscience and philosophy that explores the relevance of neuroscientific studies to the arguments traditionally categorized as philosophy of mind. The philosophy of neuroscience attempts to clarify neuroscientific methods and results using the conceptual rigor and methods of philosophy of science.

While the issue of brain-mind is still open for debate, from the perspective of neurophilosophy, an understanding of the philosophical applications of neuroscience discoveries is nevertheless relevant. Even if neuroscience eventually found that there is no causal relationship between brain and mind, the mind would still remain associated with the brain, some would argue an epiphenomenon, and as such neuroscience would still be relevant for the philosophy of the mind. At the other end of the spectrum, if neuroscience will eventually demonstrate a perfect overlap between brain and mind phenomena, neuroscience would become indispensable for the study of the mind. Clearly, regardless of the status of the brain-mind debate, the study of neuroscience is relevant for philosophy.

Below is a list of specific issues important to Philosophy of neuroscience:

Many of the methods and techniques central to neuroscientific discovery rely on assumptions that can limit the interpretation of the data. Philosophers of Neuroscience have discussed such assumptions in the use of functional Magnetic Resonance Imaging, Dissociation in Cognitive Neuropsychology,single unit recording, and computational neuroscience. Following are descriptions of many of the current controversies and debates about the methods employed in neuroscience.

Many fMRI studies rely heavily on the assumption of "localization of function"(same as functional specialization). Localization of function means that many cognitive functions can be localized to specific brain regions. A good example of functional localization comes from studies of the motor cortex. There seem to be different groups of cells in the motor cortex responsible for controlling different groups of muscles. Many philosophers of neuroscience criticize fMRI for relying too heavily on this assumption. Michael Anderson points out that subtraction method fMRI misses a lot of brain information that is important to the cognitive processes. Subtraction fMRI only shows the differences between the task activation and the control activation, but many of the brain areas activated in the control are obviously important for the task as well.


...
Wikipedia

...