• Natural Environment

    Natural Environment

    • The natural environment encompasses all living and non-living things occurring naturally. The term is most often applied to the Earth or some part of Earth. This environment encompasses the interaction of all living species, climate, weather, and natural resources that affect human survival and economic activity. The concept of the natural environment can be distinguished by components:

      In contrast to the natural environment is the built environment. In such areas where man has fundamentally transformed landscapes such as urban settings and agricultural land conversion, the natural environment is greatly modified into a simplified human environment. Even acts which seem less extreme, such as building a mud hut or a photovoltaic system in the desert, modify the natural environment into an artificial one. Though many animals build things to provide a better environment for themselves, they are not human, hence beaver dams and the works of Mound-building termites are thought of as natural.

      It is difficult to find absolutely natural environments on Earth, and naturalness usually varies in a continuum, from 100% natural in one extreme to 0% natural in the other. More precisely, we can consider the different aspects or components of an environment, and see that their degree of naturalness is not uniform. If, for instance, in an agricultural field, the mineralogic composition and the structure of its soil are similar to those of an undisturbed forest soil, but the structure is quite different.

      Natural environment is often used as a synonym for habitat. For instance, when we say that the natural environment of giraffes is the savanna.

      Earth science generally recognizes 4 spheres, the lithosphere, the hydrosphere, the atmosphere, and the biosphere as correspondent to rocks, water, air, and life respectively. Some scientists include, as part of the spheres of the Earth, the cryosphere (corresponding to ice) as a distinct portion of the hydrosphere, as well as the pedosphere (corresponding to soil) as an active and intermixed sphere. Earth science (also known as geoscience, the geosciences or the Earth Sciences), is an all-embracing term for the sciences related to the planet Earth. There are four major disciplines in earth sciences, namely geography, geology, geophysics and geodesy. These major disciplines use physics, chemistry, biology, chronology and mathematics to build a qualitative and quantitative understanding of the principal areas or spheres of Earth.

      Other layers
      • Exosphere: The outermost layer of Earth's atmosphere extends from the exobase upward, mainly composed of hydrogen and helium.
      • Thermosphere: The top of the thermosphere is the bottom of the exosphere, called the exobase. Its height varies with solar activity and ranges from about 350–800 km (220–500 mi; 1,150,000–2,620,000 ft). The International Space Station orbits in this layer, between 320 and 380 km (200 and 240 mi).
      • Mesosphere: The mesosphere extends from the stratopause to 80–85 km (50–53 mi; 262,000–279,000 ft). It is the layer where most meteors burn up upon entering the atmosphere.
      • Stratosphere: The stratosphere extends from the tropopause to about 51 km (32 mi; 167,000 ft). The stratopause, which is the boundary between the stratosphere and mesosphere, typically is at 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft).
      • Troposphere: The troposphere begins at the surface and extends to between 7 km (23,000 ft) at the poles and 17 km (56,000 ft) at the equator, with some variation due to weather. The troposphere is mostly heated by transfer of energy from the surface, so on average the lowest part of the troposphere is warmest and temperature decreases with altitude. The tropopause is the boundary between the troposphere and stratosphere.
      • The ozone layer is contained within the stratosphere. It is mainly located in the lower portion of the stratosphere from about 15–35 km (9.3–21.7 mi; 49,000–115,000 ft), though the thickness varies seasonally and geographically. About 90% of the ozone in our atmosphere is contained in the stratosphere.
      • The ionosphere, the part of the atmosphere that is ionized by solar radiation, stretches from 50 to 1,000 km (31 to 621 mi; 160,000 to 3,280,000 ft) and typically overlaps both the exosphere and the thermosphere. It forms the inner edge of the magnetosphere.
      • The homosphere and heterosphere: The homosphere includes the troposphere, stratosphere, and mesosphere. The upper part of the heterosphere is composed almost completely of hydrogen, the lightest element.
      • The planetary boundary layer is the part of the troposphere that is nearest the Earth's surface and is directly affected by it, mainly through turbulent diffusion.
      • The nitrogen cycle is the transformation of nitrogen and nitrogen-containing compounds in nature. It is a cycle which includes gaseous components.
      • The water cycle, is the continuous movement of water on, above, and below the surface of the Earth. Water can change states among liquid, vapour, and ice at various places in the water cycle. Although the balance of water on Earth remains fairly constant over time, individual water molecules can come and go.
      • The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth.
      • The oxygen cycle is the movement of oxygen within and between its three main reservoirs: the atmosphere, the biosphere, and the lithosphere. The main driving factor of the oxygen cycle is photosynthesis, which is responsible for the modern Earth's atmospheric composition and life.
      • The phosphorus cycle is the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. The atmosphere does not play a significant role in the movements of phosphorus, because phosphorus and phosphorus compounds are usually solids at the typical ranges of temperature and pressure found on Earth.
      • Adams, Simon; David Lambert (2006). Earth Science: An illustrated guide to science. New York NY 10001: Chelsea House. p. 20. ISBN . 
      • "Earth's Energy Budget". Oklahoma Climatological Survey. 1996–2004. 
      • Oldroyd, David (2006). Earth Cycles: A historical perspective. Westport, Connicticut: Greenwood Press. ISBN . 
      • Simison, W. Brian (2007-02-05). "The mechanism behind plate tectonics". 
      • Smith, Gary A.; Aurora Pun (2006). How Does the Earth Work? Physical Geology and the Process of Science. Upper Saddle River, NJ 07458: Pearson Prentice Hall. p. 5. ISBN . 
  • What Else?

    • Natural Environment