Main
Mechanics
Mechanics

Mechanics (Greek μηχανική) is an area of science concerned with the behaviour of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment. The scientific discipline has its origins in Ancient Greece with the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Khayaam, Galileo, Kepler, and Newton, laid the foundation for what is now known as classical mechanics. It is a branch of classical physics that deals with particles that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as a branch of science which deals with the motion of and forces on objects.
Historically, classical mechanics came first, while quantum mechanics is a comparatively recent invention. Classical mechanics originated with Isaac Newton's laws of motion in Principal Mathematical; Quantum Mechanics was discovered in the early 20th century. Both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other socalled exact sciences. Essential in this respect is the relentless use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them.
 Newtonian mechanics, the original theory of motion (kinematics) and forces (dynamics).

Analytical mechanics is a reformulation of Newtonian mechanics with an emphasis on system energy, rather than on forces. There are two main branches of analytical mechanics:
 Hamiltonian mechanics, a theoretical formalism, based on the principle of conservation of energy.
 Lagrangian mechanics, another theoretical formalism, based on the principle of the least action.
 Classical statistical mechanics generalizes ordinary classical mechanics to consider systems in an unknown state; often used to derive thermodynamic properties.
 Celestial mechanics, the motion of bodies in space: planets, comets, stars, galaxies, etc.
 Astrodynamics, spacecraft navigation, etc.
 Solid mechanics, elasticity, the properties of deformable bodies.
 Fracture mechanics
 Acoustics, sound ( = density variation propagation) in solids, fluids and gases.
 Statics, semirigid bodies in mechanical equilibrium
 Fluid mechanics, the motion of fluids
 Soil mechanics, mechanical behavior of soils
 Continuum mechanics, mechanics of continua (both solid and fluid)
 Hydraulics, mechanical properties of liquids
 Fluid statics, liquids in equilibrium
 Applied mechanics, or Engineering mechanics
 Biomechanics, solids, fluids, etc. in biology
 Biophysics, physical processes in living organisms
 Relativistic or Einsteinian mechanics, universal gravitation.
 Hamiltonian mechanics, a theoretical formalism, based on the principle of conservation of energy.
 Lagrangian mechanics, another theoretical formalism, based on the principle of the least action.
 Schrödinger wave mechanics, used to describe the movements of the wavefunction of a single particle.
 Matrix mechanics is an alternative formulation that allows considering systems with a finitedimensional state space.
 Quantum statistical mechanics generalizes ordinary quantum mechanics to consider systems in an unknown state; often used to derive thermodynamic properties.
 Particle physics, the motion, structure, and reactions of particles
 Nuclear physics, the motion, structure, and reactions of nuclei
 Condensed matter physics, quantum gases, solids, liquids, etc.
 Applied Mechanics Division, American Society of Mechanical Engineers
 Fluid Dynamics Division, American Physical Society
 Society for Experimental Mechanics
 Institution of Mechanical Engineers is the United Kingdom's qualifying body for Mechanical Engineers and has been the home of Mechanical Engineers for over 150 years.
 International Union of Theoretical and Applied Mechanics
 Applied mechanics
 Dynamics
 Engineering
 Index of engineering science and mechanics articles
 Kinematics
 Kinetics
 Nonautonomous mechanics
 Statics
 Wiesen Test of Mechanical Aptitude (WTMA)
 Robert Stawell Ball (1871) Experimental Mechanics from Google books.
 Landau, L. D.; Lifshitz, E. M. (1972). Mechanics and Electrodynamics, Vol. 1. Franklin Book Company, Inc. ISBN .
 iMechanica: the web of mechanics and mechanicians
 Mechanics Definition
 Mechanics Blog by a Purdue University Professor
 The Mechanics program at Virginia Tech
 Physclips: Mechanics with animations and video clips from the University of New South Wales
 U.S. National Committee on Theoretical and Applied Mechanics
 Interactive learning resources for teaching Mechanics
 The Archimedes Project
 Engineering Fundamental Solid & Fluid Mechanics

What Else?
Mechanics