*** Welcome to piglix ***

Mars general circulation model


The Mars general circulation model (MGCM) is the result of a research project by NASA to understand the nature of the general circulation of the atmosphere of Mars, how that circulation is driven and how it affects the climate of Mars in the long term.

Mars climate simulation models date as far back as the Viking missions to Mars. Most Mars climate simulation models were written by individual researchers that were never reused or open-sourced. By the 1990s the need for a unified model codebase came into being, due to the general impact of the internet on climate modelling and research. This current Mars climate simulation model has its origins with the internet era.

This Mars climate model is a complex 3-dimensional (height, latitude, longitude) model, which represents the processes of atmospheric heating by gases and ground-air heat transfer, as well as large-scale atmospheric motions.

The current model has not been modified for use with distributed computing systems like BOINC.

The Martian atmosphere contains 10 nmol/mol methane. In January 2009, NASA scientists announced that they had discovered that the planet often vents methane into the atmosphere in specific areas, leading some to speculate this may be a sign of biological activity going on below the surface.

Analysis of observations made by a Weather Research and Forecasting model for Mars (MarsWRF) and related Mars general circulation model (MGCM) suggests that it is potentially possible to isolate methane plume source locations to within tens of kilometers, which is within the roving capabilities of future Mars rovers. The Curiosity rover, which landed on Mars in August 2012, is able to make measurements that distinguish between different isotopologues of methane; but even if the mission is to determine that microscopic Martian life is the source of the methane, the life forms likely reside far below the surface, outside of the rover's reach. The first measurements with the Tunable Laser Spectrometer (TLS) indicated that there is less than 5 ppb of methane at the landing site at the point of the measurement. The Mars Trace Gas Mission orbiter planned to launch in 2016 would further study the methane, as well as its decomposition products such as formaldehyde and methanol.


...
Wikipedia

...