*** Welcome to piglix ***

Joint Precision Airdrop System


The Joint Precision Airdrop System (JPADS) is an American military airdrop system which uses the GPS, steerable parachutes, and an onboard computer to steer loads to a designated point of impact (PI) on a drop zone (DZ). It integrates the US Army's Precision and Extended Glide Airdrop System (PEGASYS) and the Air Force's Precision Airdrop System (PADS) program. PEGASYS consists of several precision airdrop systems, ranging from extra light to heavy payloads, while PADS resides on a laptop which computes the release points for non-steerable parachute systems by means of software capable of mission-planning, weather forecasting, and current measurements of wind velocity, altitude, air pressure, and temperature. It can also receive weather updates and en route mission changes through satellite links.

US Army Research, Development and Engineering Command (RDECOM) was the primary developer for JPADS, which meets several requirements: increased ground accuracy, standoff delivery, increased air carrier survivability, and improved effectiveness/assessment feedback regarding airdrop mission operations. The United States Army and Air Force began jointly developing this system in 1993. The Air Force made its first operational/combat use of the system in Afghanistan in 2006.

The steerable parachute or parafoil is called a "decelerator," and gives the JPADS system directional control throughout its descent by means of decelerator steering lines attached to the Autonomous Guidance Unit (AGU). They create drag on either side of the decelerator, which turns the parachute, thus achieving directional control.

The Autonomous Guidance Unit (AGU) contains a GPS, a battery pack, and the guidance, navigation and control (GN&C) software package. It also houses the hardware required to operate the steering lines. The AGU obtains its position prior to exiting the aircraft, and continues to calculate its position via the GPS throughout descent.

The Mission Planner software gives the aircrew the ability to plan the mission, in flight if necessary, as well as steer the aircraft to its Computed Air Release Point (CARP), where the load is released.

JPADS involves four increments, categorized by the weight of the cargo to be dropped:

Increment I: JPADS-2K / applies to loads up to 2,200 lb / classified as the “extra light” category / commensurate with Container Delivery System (CDS) bundles.

Increment II: JPADS-10K / applies to loads up to 10,000 lb.

Increment III: JPADS-30K / applies to loads up to 30,000 lb.

Increment IV: JPADS-60K / applies to loads up to 60,000 lb.

JPADS is reported to be accurate to 50–75 metres (164–246 ft), drastically reduces drop zone size requirements; significantly increasing the number of locations which can be used as a drop zone. This reduces both the risk of hostile fire to aircraft and aircrews and the amount of cargo that misses a drop zone.


...
Wikipedia

...