*** Welcome to piglix ***

Horn loudspeaker


A horn loudspeaker is a loudspeaker or loudspeaker element which uses an acoustic horn to increase the overall efficiency of the driving element(s). A common form (right) consists of a compression driver which produces sound waves with a small metal diaphragm vibrated by an electromagnet, attached to a horn, a flaring duct to conduct the sound waves to the open air. Another type is a woofer driver mounted in a loudspeaker enclosure which is divided by internal partitions to form a zigzag flaring duct which functions as a horn; this type is called a folded horn speaker. The horn serves to improve the coupling efficiency between the speaker driver and the air. The horn can be thought of as an "acoustic transformer" that provides impedance matching between the relatively dense diaphragm material and the less-dense air. The result is greater acoustic output power from a given driver.

The narrow part of the horn next to the driver is called the "throat" and the large part farthest away from the driver is called the "mouth". The angular coverage (radiation pattern) of the horn is determined by the shape and flare of the mouth. Unlike cone speakers, horn speakers usually have rectangular apertures, with the width tailored for proper horizontal coverage angle, and height tailored for proper vertical coverage angle. A major problem of horn speakers is that the radiation pattern varies with frequency; high frequency sound tends to be emitted in narrow beams with poor off-axis performance. Significant improvements have been made, beginning with the "constant directivity" horn invented in 1975 by Don Keele.

The main advantage of horn loudspeakers is they are more efficient; they can typically produce 10 times (10 dB) more sound power than a cone speaker from a given amplifier output. Therefore horns are widely used in public address systems, megaphones, and sound systems for large venues like theaters, auditoriums, and sports stadiums. Their disadvantage is that their frequency response is more uneven because of resonance peaks, and horns have a cutoff frequency below which their response drops off. To achieve adequate response at bass frequencies horn speakers must be very large and cumbersome, so they are more often used for midrange and high frequencies. The first practical loudspeakers, introduced around the turn of the 20th century, were horn speakers. Due to the development in recent decades of more efficient cone loudspeakers, which have a flatter frequency response, use of horn speakers in high fidelity audio systems has declined.


...
Wikipedia

...