Main

  • Heatsetting

    Heatsetting


    • Heat setting is a term used in the textile industry to describe a thermal process taking place mostly in either a steam atmosphere or a dry heat environment. The effect of the process gives fibers, yarns or fabric dimensional stability and, very often, other desirable attributes like higher volume, wrinkle resistance or temperature resistance. Very often, heat setting is also used to improve attributes for subsequent processes. Yarns tend to have increased torquing just after spinning, cabling or twisting. Heat setting can influence or even eliminate this tendency to undesirable torquing. At the winding, twisting, weaving, tufting and knitting processes, an increased tendency to torquing can cause difficulties in processing the yarn. When using heat setting for carpet yarns, desirable results include not only the diminishing of torquing but also the stabilization or fixing of the fiber thread. Both twist stabilization and stabilization of frieze effect are results of the heat setting process. Heat setting benefits staple yarns as well as bulked continuous filament (BCF) yarns. Heat setting often causes synthetic fibers to gain volume as well. This volume growth is commonly described as “bulk development”. All processes using temperature and/or moisture to give textiles one of the above-mentioned attributes are known as heat setting. The term “thermal fixation” is used less frequently. In the carpet industry, the process is exclusively called “heat setting”.

      The crinkle tendency is due to the technological conditions of the spun yarn production and the physical fiber properties. Above all, the “technological conditions of the spun yarn production” means the turning moment of the thread. A twisted thread will always try to twist when it hangs freely between two fixed points in the form of a loop. In doing this, it gives up a part of its original twist which becomes spirals whose twisting direction is opposite to the original twist direction. This development of twist in the opposite direction occurs as the twisted yarn attempts to reach equilibrium.

      Twisting in the opposite direction is due to the tensions resulting from the yarn twisting that Mueller indicated in the diagram of tension and pressure. The total tension acting against the twisting is increased in relation to increased twisting due to the increasing tension and pressure of the bundle of fibres in the yarn. It may become so strong that the thread core buckles when it can no longer withstand the compressive strains. The yarn curls, meaning that the yarn tries to reach a state of equilibrium in which twists in the opposite direction from the original twist direction balance the yarn’s torque.These twists are also called negative twists. In this state of equilibrium, the inner torsional tensions cancel each other out. The thread always buckles at a spot where the cross section is small due to the unevenness of the thread. During the spinning process this spot took up more twists and is therefore subjected to higher inner tensions, which ultimately break the thread core. Although thicker yarns are less twisted than fine ones, the inner tension rises opposite to the yarn size. Smaller yarn is more weakened by steaming. Further positive aspects of steaming are the reduction of curling and, at the same time, the setting of the physical properties of closeness and extension imparted to the yarn by twisting.


      Material Deformation point Distortion temperature
      Polyester 80-85 °C 230-240 °C
      Nylon 6 80-85 °C 180-200 °C
      Nylon 66 90-95 °C 220-235 °C

      • Textil-Praxis (1958), 401 - „Befeuchtung oder Dämpfen von Wollgarnen”
      • Textilbetrieb (1981), 29 - „Gleichmäßige Effekte beim Garndämpfen“
      • Dr. H.-J. Henning, Dr.-Ing. Cl. Sustmann - Melliand Textilberichte „Untersuchungen über das Vakuumdämpfen von Wollgarnen“ (1966), 530
      • Jens Holm Dittrich, Paul Naefe, Johann Kreitz - Melliand Textilberichte „Verfahren zur Drallberuhigung von Wollgarnen durch Kurzzeitdämpfen“ (1986), 817
      • Jens Holm Dittrich, Attila Bereck, Günter Blanckenburg - Melliand Textilberichte „Untersuchungen über das Vergilben von Wollgarnen beim Dämpfen“ (1983),
      • Jens Holm Dittrich, Gesine Töpert - Melliand Textilberichte „Ursachen der Vergilbung von Kammzugsbumps und Kreuzspulen bei der HF-Trocknung“ (1988), 288
      • Dr. Oskar Becker - Melliand Textilberichte „Spannfäden in Wollgarnen“ (1977), 97
      • Patenanmeldung DP 3601099.5 H. Kranz GmbH & Co. 5100 Aachen “Verfahren zum Fixieren von Garnen“
      • W. Schefer - Eidg. Materialprüfungs- und Versuchsanstalt, St. Gallen „Verän-derung der Wolle durch Wärmebehandlungen im Veredelungsbereich“,
      • Hans Erich Schiecke - Verlag Schiele & Schön „Wolle als textiler Rohstoff“
      • K. Kröll - Springer Verlag, Heidelberg, Berlin, New York „Trocknungstechnik“ Band II/I
      • Peter Toggweiler, Simon Gleich, Freddy Wanger, F.Steiner – Meliand Textil-berichte 9/1995 „Qualitätsverbesserung der mit Contexxor konditionierten Baumwollgarne“
      • Dipl.-Ing. Gisela Axt - W. Bertelsmann Verlag KG Bielefeld 1986, „Beurtei-lungsmerkmale textiler Faserstoffe“, Band1/2/3Dr. Oskar Becker - Melliand Textilberichte „Spannfäden in Wollgarnen“ (1977), 97
    Wikipedia
  • What Else?

    • Heatsetting

Extras