*** Welcome to piglix ***

Glacial motion


Glacial motion is the motion of glaciers, which can be likened to rivers of ice. It has played an important role in sculpting many landscapes. Most lakes in the world occupy basins scoured out by glaciers. Glacial motion can be fast (up to 30 m/day, observed on Jakobshavn Isbræ in Greenland) or slow (0.5 m/year on small glaciers or in the center of ice sheets), but is typically around 1 metre/day.

Glacier motion occurs from four processes, all driven by gravity: basal sliding, glacial quakes generating fractional movements of large sections of ice, bed deformation, and internal deformation.

If a glacier's terminus moves forward faster than it melts, the net result is advance. Glacier retreat occurs when more material ablates from the terminus than is replenished by flow into that region.

Glaciologists consider that trends in mass balance for glaciers are more fundamental than the advance or retreat of the termini of individual glaciers. In the years since 1960, there has been a striking decline in the overall volume of glaciers worldwide. This decline is correlated with global warming. As a glacier thins, due to the loss of mass it will slow down and crevassing will decrease.

Studying glacial motion and the landforms that result requires tools from many different disciplines: physical geography, climatology, and geology are among the areas sometime grouped together and called earth science.

During the (the last ice age), huge sheets of ice called continental glaciers advanced over much of the earth. The movement of these continental glaciers created many now-familiar glacial landforms. As the glaciers were expanded, due to their accumulating weight of snow and ice, they crushed and redistributed surface rocks, creating erosional landforms such as , cirques, and hanging valleys. Later, when the glaciers retreated leaving behind their freight of crushed rock and sand, depositional landforms were created, such as moraines, eskers, drumlins, and kames. The stone walls found in New England (northeastern United States) contain many glacial erratics, rocks that were dragged by a glacier many miles from their bedrock origin.


...
Wikipedia

...