*** Welcome to piglix ***

Geomagnetic reversal


A geomagnetic reversal is a change in a planet's magnetic field such that the positions of magnetic north and magnetic south are interchanged, while geographic north and geographic south remain the same. The Earth's field has alternated between periods of normal polarity, in which the direction of the field was the same as the present direction, and reverse polarity, in which the field was the opposite. These periods are called chrons.

The time spans of chrons are randomly distributed with most being between 0.1 and 1 million years with an average of 450,000 years. Most reversals are estimated to take between 1,000 and 10,000 years. The latest one, the Brunhes–Matuyama reversal, occurred 780,000 years ago, and may have happened very quickly, within a human lifetime.

A brief complete reversal, known as the Laschamp event, occurred only 41,000 years ago during the last glacial period. That reversal lasted only about 440 years with the actual change of polarity lasting around 250 years. During this change the strength of the magnetic field weakened to 5% of its present strength. Brief disruptions that do not result in reversal are called geomagnetic excursions.

In the early 20th century, geologists first noticed that some volcanic rocks were magnetized opposite to the direction of the local Earth's field. The first estimate of the timing of magnetic reversals was made by Motonori Matuyama in the 1920s; he observed that rocks with reversed fields were all of early age or older. At the time, the Earth's polarity was poorly understood, and the possibility of reversal aroused little interest.

Three decades later, when Earth's magnetic field was better understood, theories were advanced suggesting that the Earth's field might have reversed in the remote past. Most paleomagnetic research in the late 1950s included an examination of the wandering of the poles and continental drift. Although it was discovered that some rocks would reverse their magnetic field while cooling, it became apparent that most magnetized volcanic rocks preserved traces of the Earth's magnetic field at the time the rocks had cooled. In the absence of reliable methods for obtaining absolute ages for rocks, it was thought that reversals occurred approximately every million years.


...
Wikipedia

...