*** Welcome to piglix ***

Evolving digital ecological networks


Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms) that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism). Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks) that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved).

In nature, species do not evolve in isolation but in large networks of interacting species. One of the main goals in evolutionary ecology is to disentangle the evolutionary mechanisms that shape and are shaped by patterns of interaction between species. A particularly important question concerns how coevolution, the reciprocal evolutionary change in local populations of interacting species driven by natural selection, is shaped by the architecture of food webs, plant-animal mutualistic networks, and host-parasite communities. The concept of diffuse coevolution, where adaptation is in response to a suite of biotic interactions, was the first step towards a framework unifying relevant theories in community ecology and coevolution. Understanding how individual interactions within networks influence coevolution, and conversely how coevolution influences the overall structure of networks, requires an appreciation for how pair-wise interactions change due to their broader community contexts as well as how this community context shapes selective pressures. Accordingly, research is now focusing on how reciprocal selection influences and is embedded within the structure of multispecies interactive webs, not only on particular species in isolation.


...
Wikipedia

...