*** Welcome to piglix ***

Energy dispersal


In physics education, the concept of entropy is traditionally introduced as a quantitative measure of disorder. While acknowledging this approach is technically sound, some educators argue entropy and related thermodynamic concepts are easier to understand if entropy is described as a measure of energy dispersal instead. In this alternative approach, entropy is a measure of energy dispersal or distribution at a specific temperature. Changes in entropy can be quantitatively related to the distribution or the spreading out of the energy of a thermodynamic system, divided by its temperature.

The energy dispersal approach to teaching entropy was developed to facilitate teaching entropy to students beginning university chemistry and biology. This new approach also avoids ambiguous terms such as disorder and , which have multiple everyday meanings.

The term "entropy" has been in use from early in the history of classical thermodynamics, and with the development of statistical thermodynamics and quantum theory, entropy changes have been described in terms of the mixing or "spreading" of the total energy of each constituent of a system over its particular quantized energy levels.

Such descriptions have tended to be used together with commonly used terms such as disorder and chaos which are ambiguous, and whose everyday meaning is the opposite of what they are intended to mean in thermodynamics. Not only does this situation cause confusion, but it also hampers the teaching of thermodynamics. Students were being asked to grasp meanings directly contradicting their normal usage, with equilibrium being equated to "perfect internal disorder" and the mixing of milk in coffee from apparent chaos to uniformity being described as a transition from an ordered state into a disordered state.

The description of entropy as the amount of "mixedupness" or "disorder," as well as the abstract nature of the statistical mechanics grounding this notion, can lead to confusion and considerable difficulty for those beginning the subject. Even though courses emphasised microstates and energy levels, most students could not get beyond simplistic notions of randomness or disorder. Many of those who learned by practising calculations did not understand well the intrinsic meanings of equations, and there was a need for qualitative explanations of thermodynamic relationships.


...
Wikipedia

...