*** Welcome to piglix ***

Electromagnetic propulsion


Electromagnetic propulsion (EMP), is the principle of accelerating an object by the utilization of a flowing electrical current and magnetic fields. The electrical current is used to either create an opposing magnetic field, or to charge a field, which can then be repelled. When a current flows through a conductor in a magnetic field, an electromagnetic force known as a Lorentz force, pushes the conductor in a direction perpendicular to the conductor and the magnetic field. This repulsing force is what causes propulsion in a system designed to take advantage of the phenomenon. The term electromagnetic propulsion (EMP) can be described by its individual components: electromagnetic – using electricity to create a magnetic field, and propulsion – the process of propelling something. One key difference between EMP and propulsion achieved by electric motors is that the electrical energy used for EMP is not used to produce rotational energy for motion; though both use magnetic fields and a flowing electrical current.

The science of electromagnetic propulsion does not have origins with any one individual and has application in many different fields. The thought of using magnets for propulsion continues to this day and has been dreamed of since at least 1897 when John Munro published his fictional story "A Trip to Venus". Current applications can be seen in maglev trains and military railguns. Other applications that remain not widely used or still in development include ion thruster for low orbiting satellites and magnetohydrodynamic drive for ships and submarines.

One of the first recorded discoveries regarding electromagnetic propulsion was in 1889 when Professor Elihu Thomson made public his work with electromagnetic waves and alternating currents. A few years later Emile Bachelet proposed the idea of a metal carriage levitated in air above the rails in a modern railway, which he showcased in the early 1890s. In the 1960s Eric Roberts Laithwaite developed the linear induction motor, which built upon these principles and introduced the first practical application of electromagnetic propulsion. In 1966 James R. Powell and Gordon Danby patented the superconducting maglev transportation system, and after this engineers around the world raced to create the first high-speed rail. From 1984 to 1995 the first commercial automated maglev system ran in Birmingham. It was a low speed Maglev shuttle that ran from the Birmingham International Airport to the Birmingham International Railway System.


...
Wikipedia

...