*** Welcome to piglix ***

Deglaciation


Deglaciation, describes the transition from full glacial conditions during ice ages, to warm interglacials, characterized by global warming and sea level rise due to change in continental ice volume (IPCC AR5). Thus, it refers to the retreat of a glacier, an ice sheet or frozen surface layer, and the resulting exposure of the Earth's surface. The decline of the cryosphere due to ablation can occur on any scale from global to localized to a particular glacier. After the Last Glacial Maximum (ca. 21k years ago), the last deglaciation begun, which lasted until the early Holocene.

The process of deglaciation reflects a lack of balance between existing glacial extent and climatic conditions. As a result of net negative mass balance over time, glaciers and ice sheets retreat. The repeated periods of increased and decreased extent of the global cryposhere (as deduced from observations of ice and rock cores, surface landforms, sub-surface geologic structures, the fossil record, and other methods of dating) reflect the cyclical nature of global and regional glaciology measured by ice ages and smaller periods known as glacials and interglacials. Since the end of the Last glacial period about 12,000 years ago, ice sheets have retreated on a global scale, and Earth has been experiencing a relatively warm interglacial period marked by only high-altitude alpine glaciers at most latitudes with larger ice sheet and sea ice at the poles. However, since the onset of the Industrial Revolution, human activity has contributed to a rapid increase in the speed and scope of deglaciation globally.

Research published in 2014 suggests that below Greenland's Russell Glacier's ice sheet, methanotrophs could serve as a biological methane sink for the subglacial ecosystem, and the region was at least during the sample time, a source of atmospheric methane. Based on dissolved methane in water samples, Greenland may represent a significant global methane source, and may contribute significantly more due to ongoing deglaciation. A study in 2016 concluded based on past evidence, that below Greenland's and Antarctica's ice sheet may exist methane clathrates.


...
Wikipedia

...