*** Welcome to piglix ***

Corrosion in space


Corrosion in space is the corrosion of materials occurring in outer space. Instead of moisture and oxygen acting as the primary corrosion causes, the materials exposed to outer space are subjected to vacuum, bombardment by ultraviolet light and x-rays, high-energy charged particles (mostly electrons and protons from the solar wind). In the upper layers of the atmosphere (between 90–800 km), the atmospheric atoms, ions and free radicals, most notably atomic oxygen, play a major role. The concentration of atomic oxygen depends on altitude and solar activity, as the bursts of ultraviolet radiation cause photodissociation of molecular oxygen. Between 160 and 560 km, the atmosphere consists of about 90% atomic oxygen.

Corrosion in space has the highest impact on spacecraft with moving parts. Early satellites tended to develop problems with seizing bearings. Now the bearings are coated with a thin layer of gold.

Different materials resist corrosion in space differently. For example, aluminium is slowly eroded by atomic oxygen, while gold and platinum are highly corrosion-resistant. Gold-coated foils and thin layers of gold on exposed surfaces are therefore used to protect the spacecraft from the harsh environment. Thin layers of silicon dioxide deposited on the surfaces can also protect metals from the effects of atomic oxygen; e.g., the Starshine 3 satellite aluminium front mirrors were protected that way. However, the protective layers are subject to erosion by micrometeorites.

Silver builds up a layer of silver oxide, which tends to flake off and has no protective function; such gradual erosion of silver interconnects of solar cells was found to be the cause of some observed in-orbit failures.


...
Wikipedia

...