*** Welcome to piglix ***

Continuum hypothesis


In mathematics, the continuum hypothesis (abbreviated CH) is a hypothesis about the possible sizes of infinite sets. It states:

The continuum hypothesis was advanced by Georg Cantor in 1878, and establishing its truth or falsehood is the first of Hilbert's 23 problems presented in 1900. Τhe answer to this problem is independent of ZFC set theory (that is, Zermelo–Fraenkel set theory with the axiom of choice included), so that either the continuum hypothesis or its negation can be added as an axiom to ZFC set theory, with the resulting theory being consistent if and only if ZFC is consistent. This independence was proved in 1963 by Paul Cohen, complementing earlier work by Kurt Gödel in 1940.

The name of the hypothesis comes from the term the continuum for the real numbers.

Two sets are said to have the same cardinality or cardinal number if there exists a bijection (a one-to-one correspondence) between them. Intuitively, for two sets S and T to have the same cardinality means that it is possible to "pair off" elements of S with elements of T in such a fashion that every element of S is paired off with exactly one element of T and vice versa. Hence, the set {banana, apple, pear} has the same cardinality as {yellow, red, green}.

With infinite sets such as the set of integers or rational numbers, this becomes more complicated to demonstrate. The rational numbers seemingly form a counterexample to the continuum hypothesis: the integers form a proper subset of the rationals, which themselves form a proper subset of the reals, so intuitively, there are more rational numbers than integers and more real numbers than rational numbers. However, this intuitive analysis does not take account of the fact that all three sets are infinite. It turns out the rational numbers can actually be placed in one-to-one correspondence with the integers, and therefore the set of rational numbers is the same size (cardinality) as the set of integers: they are both countable sets.


...
Wikipedia

...