*** Welcome to piglix ***

Carl H. Brans

Carl H. Brans
Born (1935-12-13) December 13, 1935 (age 81)
Dallas, Texas, United States
Fields General relativity and Mathematical Physics
Institutions Loyola University New Orleans
Alma mater Princeton University
Doctoral advisor Robert H. Dicke
Charles W. Misner
Known for Brans–Dicke theory
Spouse Anna Dora Monteiro (m. 1957)

Carl Henry Brans (born December 13, 1935) is an American mathematical physicist best known for his research into the theoretical underpinnings of gravitation elucidated in his most widely publicized work, the Brans–Dicke theory.

A Texan, born in Dallas, Carl Brans spent his academic career in neighboring Louisiana, graduating in 1957 from Loyola University New Orleans. Having obtained his Ph.D from New Jersey's Princeton University in 1961, he returned to Loyola in 1960 and later became the J.C. Carter Distinguished Professor of Theoretical Physics. Since then he has held visiting professorships at Princeton University, the Institute for Advanced Studies, and the Institute for Theoretical Physics at the University of Koeln, Germany.

Brans is well known among those engaged in the study of gravity and is noted for his development, with Robert H. Dicke of the Brans–Dicke[1] theory of gravitation in which the gravitational constant varies with time, a leading competitor of Einstein's theory of general relativity. The work of Brans and Dicke actually was closely related to earlier work of Pascual Jordan, but was developed independently. This formulation is often referred to as the Jordan–Brans–Dicke (JBD) scalar–tensor theory of gravity. In this theory, based on speculations of Mach, Eddington, Dirac and others, a universally coupled scalar field, in addition to the metric, is introduced which ultimately results in a theory in which the gravitational constant depends on the distribution of matter in the universe. A number of very accurate measurements made in the late 1970s has indicated that JBD fares no better than the simpler standard Einstein General Relativity, in the solar system context. However, developments in string theory and in inflationary cosmology have renewed interest in scalar field modifications of standard general relativity, although not in the original JBD form.


...
Wikipedia

...