*** Welcome to piglix ***

Adiabatic wall


In thermodynamics, an adiabatic wall between two thermodynamic systems does not allow heat or matter to pass across it.

In theoretical investigations, it is sometimes assumed that one of the two systems is the surroundings of the other. Then it is assumed that the work transferred is reversible within the surroundings, but in thermodynamics it is not assumed that the work transferred is reversible within the system. The assumption of reversibility in the surroundings has the consequence that the quantity of work transferred is well defined by macroscopic variables in the surroundings. Accordingly, the surroundings are sometimes said to have a reversible work reservoir.

Along with the idea of an adiabatic wall is that of an adiabatic enclosure. It is easily possible that a system has some boundary walls that are adiabatic and others that are not. When some are not adiabatic, then the system is not adiabatically enclosed, though adiabatic transfer of energy as work can occur across the adiabatic walls.

The adiabatic enclosure is important because, according to one widely cited author, Herbert Callen, "An essential prerequisite for the measurability of energy is the existence of walls that do not permit the transfer of energy in the form of heat." In thermodynamics, it is customary to assume a priori the physical existence of adiabatic enclosures, though it is not customary to label this assumption separately as an axiom or numbered law.

In theoretical thermodynamics, respected authors vary in their approaches to the definition of quantity of heat transferred. There are two main streams of thinking. One is from a primarily empirical viewpoint (which will here be referred to as the thermodynamic stream), to define heat transfer as occurring only by specified macroscopic mechanisms; loosely speaking, this approach is historically older. The other (which will here be referred to as the mechanical stream) is from a primarily theoretical viewpoint, to define it as a residual quantity after transfers of energy as macroscopic work, between two bodies or closed systems, have been determined for a process, so as to conform with the principle of conservation of energy or the first law of thermodynamics for closed systems; this approach grew in the twentieth century, though was partly manifest in the nineteenth.

In the thermodynamic stream of thinking, the specified mechanisms of heat transfer are conduction and radiation. These mechanisms presuppose recognition of temperature; empirical temperature is enough for this purpose, though absolute temperature can also serve. In this stream of thinking, quantity of heat is defined primarily through calorimetry.


...
Wikipedia

...