$2,000 in free prizes! piglix.com is giving away ten (10) Meccano Erector sets, retail at $200 each, that build a motorized Ferris Wheel (or one of 22 other models) ... see details
Free Ads! if you are a business with annual revenues of less than $1M - piglix.com will place your ads free of charge for up to one year! ... read more
The Gini coefficient (sometimes expressed as a Gini ratio or a normalized Gini index) (/dʒini/ jee-nee) is a measure of statistical dispersion intended to represent the income or wealth distribution of a nation's residents, and is the most commonly used measure of inequality. It was developed by the Italian statistician and sociologist Corrado Gini and published in his 1912 paper Variability and Mutability (Italian: Variabilità e mutabilità).
The Gini coefficient measures the inequality among values of a frequency distribution (for example, levels of income). A Gini coefficient of zero expresses perfect equality, where all values are the same (for example, where everyone has the same income). A Gini coefficient of 1 (or 100%) expresses maximal inequality among values (e.g., for a large number of people, where only one person has all the income or consumption, and all others have none, the Gini coefficient will be very nearly one). However, a value greater than one may occur if some persons represent negative contribution to the total (for example, having negative income or wealth). For larger groups, values close to or above 1 are very unlikely in practice. Given the normalization of both the cumulative population and the cumulative share of income used to calculate the Gini coefficient, the measure is not overly sensitive to the specifics of the income distribution, but rather only on how incomes vary relative to the other members of a population. The exception to this is in the redistribution of wealth resulting in a minimum income for all people. When the population is sorted, if their income distribution were to approximate a well known function, then some representative values could be calculated.
Income Distribution function | PDF(x) | Gini Coefficient |
---|---|---|
Dirac delta function | 0 | |
Uniform distribution | ||
Exponential distribution | ||
Log-normal distribution | ||
Pareto distribution | ||
Chi-squared distribution | ||
Gamma distribution | ||
Weibull distribution | ||
Beta distribution |
Year | World Gini coefficients |
---|---|
1820 | 0.43 |
1850 | 0.53 |
1870 | 0.56 |
1913 | 0.61 |
1929 | 0.62 |
1950 | 0.64 |
1960 | 0.64 |
1980 | 0.66 |
2002 | 0.71 |
2005 | 0.68 |
Year | World Gini coefficient |
---|---|
1988 | .80 |
1993 | .76 |
1998 | .74 |
2003 | .72 |
2008 | .70 |
2013 | .65 |
Household Group |
Country A Annual Income ($) |
Country B Annual Income ($) |
---|---|---|
1 | 20,000 | 9,000 |
2 | 30,000 | 40,000 |
3 | 40,000 | 48,000 |
4 | 50,000 | 48,000 |
5 | 60,000 | 55,000 |
Total Income | $200,000 | $200,000 |
Country's Gini | 0.2 | 0.2 |
Household number |
Country A Annual Income ($) |
Household combined number |
Country A combined Annual Income ($) |
---|---|---|---|
1 | 20,000 | 1 & 2 | 50,000 |
2 | 30,000 | ||
3 | 40,000 | 3 & 4 | 90,000 |
4 | 50,000 | ||
5 | 60,000 | 5 & 6 | 130,000 |
6 | 70,000 | ||
7 | 80,000 | 7 & 8 | 170,000 |
8 | 90,000 | ||
9 | 120,000 | 9 & 10 | 270,000 |
10 | 150,000 | ||
Total Income | $710,000 | $710,000 | |
Country's Gini | 0.303 | 0.293 |
Income bracket (in 2010 adjusted dollars) |
% of Population 1979 |
% of Population 2010 |
---|---|---|
Under $15,000 | 14.6% | 13.7% |
$15,000 – $24,999 | 11.9% | 12.0% |
$25,000 – $34,999 | 12.1% | 10.9% |
$35,000 – $49,999 | 15.4% | 13.9% |
$50,000 – $74,999 | 22.1% | 17.7% |
$75,000 – $99,999 | 12.4% | 11.4% |
$100,000 – $149,999 | 8.3% | 12.1% |
$150,000 – $199,999 | 2.0% | 4.5% |
$200,000 and over | 1.2% | 3.9% |
Total Households | 80,776,000 | 118,682,000 |
United States' Gini on pre-tax basis |
0.404 | 0.469 |
Don't forget! that as one of our early users, you are eligible to receive the 1,000 point bonus as soon as you have created five (5) acceptable piglix.